
Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 13: Data Storage Structures

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

File Organization

§ The database is stored as a collection of files. Each file is a sequence of
records. A record is a sequence of fields.

§ First (naïve) approach
• Assume record size is fixed
• Each file has records of one particular type only
• Different files are used for different relations
This case is the easiest to implement; we consider variable length
records later

§ We assume that records are smaller than a disk block
.

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Fixed-Length Records

§ Simple approach:
• Store record i starting from byte n * (i – 1), where n is the size of

each record.
• Record access is easy. But records may cross blocks!

§ Modification: do not allow records to cross block boundaries

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Fixed-Length Records

§ Deletion of record i: alternatives:
• move records i + 1, . . ., n to i, . . . , n – 1
• move record n to i
• do not move records, but link all free records on a free list
Record 3 deleted

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Fixed-Length Records

§ Deletion of record i: alternatives:
• move records i + 1, . . ., n to i, . . . , n – 1
• move record n to i
• do not move records, but link all free records on a free list
Record 3 deleted and replaced by record 11

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Fixed-Length Records

§ Deletion of record i: alternatives:
• move records i + 1, . . ., n to i, . . . , n – 1
• move record n to i
• do not move records, but link all free records on a free list

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Variable-Length Records

§ Variable-length records arise in database systems in several ways:
• Storage of multiple record types in a file.
• Record types that allow variable lengths for one or more fields such

as strings (varchar)
§ Store several records in blocks (slotted pages)

• A record cannot be bigger than a slotted page!
• This limits the size of records in a database, which is usually the case

(at least, by default)
§ There are special types for big records, that are treated differently

(remember the clobs and blobs in Oracle?)

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Variable-Length Records: Slotted Page Structure

§ Slotted page are usually the size of a block
§ Header contains:

• number of record entries
• end of free space in the block
• location and size of each record

§ Records can be moved around within a page to keep them contiguous
with no empty space between them; entry in the header must be
updated.

§ (Other) pointers should not point directly to record — instead, they
should point to the entry for the record in header.

EntriesSize
Location

Block Header Records

Free Space

End of Free Space

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Storing Large Objects

§ E.g., blob/clob types
§ Records must be smaller than pages
§ Alternatives:

• Store as files in file systems
• Store as files managed by database
• Break into pieces and store in multiple tuples in separate relation

§ PostgreSQL TOAST

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Organization of Records in Files

§ Heap – record can be placed anywhere in the file where there is space
§ Sequential – store records in sequential order, based on the value of the

search key of each record
§ In a multitable clustering file organization records of several different

relations can be stored in the same file
• Motivation: store related records on the same block to minimize I/O

§ B+-tree file organization
• Ordered storage even with inserts/deletes
• More on this this Friday

§ Hashing – a hash function computed on search key; the result specifies in
which block of the file the record should be placed
• More on this next week

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Sequential File Organization

§ Suitable for applications that require sequential processing of
the entire file

§ The records in the file are ordered by a search-key

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Sequential File Organization (Cont.)

§ Deletion – use pointer chains
§ Insertion –locate the position where the record is to be inserted

• if there is free space insert there
• if no free space, insert the record in an overflow block
• In either case, pointer chain must be updated

§ Need to reorganize the file
from time to time to restore
sequential order

10101

45565

76543
76766
83821
98345

12121
15151
22222
32343
33456

58583

Srinivasan

Katz

Singh
Crick
Brandt
Kim

Wu
Mozart
Einstein
El Said
Gold

Califieri

Comp. Sci.

Comp. Sci.

Finance
Biology
Comp. Sci.
Elec. Eng.

Finance
Music
Physics
History
Physics

History

65000

75000

80000
72000
92000
80000

90000
40000
95000
60000
87000

62000

48000MusicVerdi32222

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering
file organization

department

instructor

multitable clustering
of department and
instructor

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Multitable Clustering File Organization (cont.)

§ Good for queries involving department ⨝ instructor, and for queries
involving one single department and its instructors

§ Bad for queries involving only department
• But one can add pointer chains to link records of a particular relation

§ Results in variable size records

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Partitioning

§ Table partitioning: Records in a relation can be partitioned into smaller
relations that are stored separately

§ E.g., transaction relation may be partitioned into
transaction_2018, transaction_2019, etc.

§ Queries written on transaction must access records in all partitions
• Unless query has a selection such as year=2019, in which case only

one partition in needed
§ Partitioning

• Reduces costs of some operations such as free space management
• Allows different partitions to be stored on different storage devices

§ E.g., transaction partition for current year on SSD, for older years
on magnetic disk

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

File System

§ In sequential file organisation, each relation (or partition of a relation) is
stored in a file
• One may rely in the file system of the underlying operating system

§ Multitable clustering may have significant gains in efficiency
• But this may not be compatible with the file system of the operating

system

§ Several large scale database management systems do not rely directly on
the underlying operating system
• The relations are all stored in a single (multitable) file
• The database management system manages the file by itself
• This requires the implementation of an own file system inside the

DBMS

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Data Dictionary Storage

§ Information about relations
• names of relations
• names, types and lengths of attributes of each relation
• names and definitions of views
• integrity constraints

§ User and accounting information, including passwords
§ Statistical and descriptive data

• number of tuples in each relation
§ Physical file organization information

• How relation is stored (sequential/hash/…)
• Physical location of relation

§ Information about indices (more on this later)

The Data dictionary (also called system catalog) stores
metadata; that is, data about data, such as

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Relational Representation of System Metadata

Relation_metadata
relation_name
number_of_a!ributes
storage_organization
location

Index_metadata
index_name
relation_name
index_type
index_a!ributes

View_metadata
view_name
definition

A!ribute_metadata
relation_name
a!ribute_name
domain_type
position
length

User_metadata
user_name
encrypted_password
group

§ Relational
representation on
disk

§ Specialized data
structures designed
for efficient access,
in memory

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Storage Access

§ Blocks are units of both storage allocation and data transfer.
§ Database system seeks to minimize the number of block transfers

between the disk and memory. We can reduce the number of disk
accesses by keeping as many blocks as possible in main memory.

§ Buffer – portion of main memory available to store copies of disk blocks.
§ Buffer manager – subsystem responsible for allocating buffer space in

main memory.

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Buffer Manager

§ Programs call on the buffer manager when they need a block from disk.
• If the block is already in the buffer, buffer manager returns the address

of the block in main memory
• If the block is not in the buffer, the buffer manager

§ Allocates space in the buffer for the block
• Replacing (throwing out) some other block, if required, to make

space for the new block.
• Replaced block written back to disk only if it was modified since

the most recent time that it was written to/fetched from the disk.
§ Reads the block from the disk to the buffer and returns the address

of the block in main memory to requester.

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Buffer Manager

§ Buffer replacement strategy (details coming up!)
§ Pinned block: memory block that is not allowed to be written back to disk

• Pin done before reading/writing data from a block
• Unpin done when read /write is complete
• Multiple concurrent pin/unpin operations possible

§ Keep a pin count, buffer block can be evicted only if pin count = 0

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Buffer-Replacement Policies

§ Most operating systems replace the block least recently used (LRU
strategy)
• Idea behind LRU – use past pattern of block references as a predictor

of future references
• LRU can be bad for some queries

§ Queries have well-defined access patterns (such as sequential scans),
and a database system can use the information in a user’s query to
predict future references

§ Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

§ Example of bad access pattern for LRU: when computing the join of 2
relations r and s by a nested loop

for each tuple tr of r do
for each tuple ts of s do

if the tuples tr and ts match …

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Buffer-Replacement Policies (Cont.)

§ Toss-immediate strategy – frees the space occupied by a block as soon
as the final tuple of that block has been processed

§ Most recently used (MRU) strategy – system must pin the block
currently being processed. After the final tuple of that block has been
processed, the block is unpinned, and it becomes the most recently used
block.

§ Buffer manager can use statistical information regarding the probability
that a request will reference a particular relation
• E.g., the data dictionary is frequently accessed. Heuristic: keep

data-dictionary blocks in main memory buffer

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

File Organization in Oracle

§ Oracle has its own buffer management, with complex policies
• Oracle doesn’t rely on the underlying operating system’s file system

§ A database in Oracle consists of tablespaces:
• System tablespace: contains catalog meta-data
• User data tablespaces

§ The space in a tablespace is divided into segments:
• Data segment
• Index segment
• Temporary segment (for sort operations)
• Rollback segment (for processing transactions)

§ Segments are divided into extents, each extent being a set of contiguous
database blocks.
• A database block need not be the same size of an operating system

block, but is always a multiple

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

File Organization in Oracle

§ A standard table is organised in a heap (no sequence is imposed)
§ Partitioning of tables is possible for optimisation

• Range partitioning (e.g by dates)
• Hash partitioning
• Composite partitioning

§ Table data in Oracle can also be (multitable) clustered
• One may tune the clusters to significantly improve the efficiency of

query to frequently used joins.
§ Hash file organisation (to be studied later) is also possible for fetching the

appropriate cluster

§ A database can be tuned by an appropriate choice for the organisation of
data:
• Choosing partitions
• Appropriate choice of clusters
• Hash or sequential

§ Tuning makes the difference in big (real) databases!

Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 14: Indexing

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Outline

§ Basic Concepts
§ Ordered Indices
§ B+-Tree Index Files
§ B-Tree Index Files
§ Hashing
§ Write-optimized indices
§ Spatio-Temporal Indexing

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Concepts

§ Indexing mechanisms used to speed up access to desired data.
• E.g., author catalog in library

§ Search Key - attribute to set of attributes used to look up records in a
file.

§ An index file consists of records (called index entries) of the form

§ Index files are typically much smaller than the original file
§ Two basic kinds of indices:

• Ordered indices: search keys are stored in sorted order
• Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

search-key pointer

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Index Evaluation Metrics

§ Access time
§ Insertion time
§ Deletion time
§ Space overhead

§ Access types supported efficiently. E.g.,
• Records with a specified value in the attribute
• Or records with an attribute value falling in a specified range of values

§ The desired/usual access type strongly influences the choice of index

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

Ordered Indices

§ In an ordered index, index entries are stored sorted on the search key
value.

§ Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.
• Also called clustering index
• The search key of a primary index is usually but not necessarily the

primary key.
§ Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called
nonclustering index.

§ Index-sequential file: sequential file ordered on a search key, with a
clustering index on the search key.

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Dense Index Files

§ Dense index — Index record appears for every search-key value in the
file.

§ E.g. index on ID attribute of instructor relation

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Dense Index Files (Cont.)

§ Dense index on dept_name, with instructor file sorted on dept_name

Biology
Comp. Sci.
Elec. Eng.
Finance
History
Music
Physics

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

FCT NOVA33José Alferes – Adaptado de Database System Concepts - 7th Edition

Sparse Index Files

§ Sparse Index: contains index records for only some search-key
values.
• Only applicable in primary index, when records are sequentially

ordered on search-key
§ To locate a record with search-key value K we:

• Find index record with largest search-key value < K
• Search file sequentially starting at the record to which the index

record points
10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

FCT NOVA34José Alferes – Adaptado de Database System Concepts - 7th Edition

Sparse Index Files (Cont.)

§ Compared to dense indices:
• Less space and less maintenance overhead for insertions and deletions.
• Generally slower than dense index for locating records.

§ Good tradeoff:
• for clustered index: sparse index with an index entry for every block in file,

corresponding to least search-key value in the block.

• For unclustered index: sparse index on top of dense index (multilevel index)

FCT NOVA35José Alferes – Adaptado de Database System Concepts - 7th Edition

Multilevel Index

§ If index does not fit in memory, access becomes expensive.
§ Solution: treat index kept on disk as a sequential file and construct a

sparse index on it.
• outer index – a sparse index of the basic index
• inner index – the basic index file

§ If even outer index is too large to fit in main memory, yet another level of
index can be created, and so on.

§ Indices at all levels must be updated on insertion or deletion from the file.

FCT NOVA36José Alferes – Adaptado de Database System Concepts - 7th Edition

Multilevel Index (Cont.)

FCT NOVA37José Alferes – Adaptado de Database System Concepts - 7th Edition

Index Update: Deletion

§ Single-level index entry deletion:
• Dense indices – deletion of search-key is similar to file record

deletion.
• Sparse indices –

§ if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in
the file (in search-key order).

§ If the next search-key value already has an index entry, the entry
is deleted instead of being replaced.

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

§ If deleted record was the
only record in the file with
its particular search-key
value, the search-key is
deleted from the index
also.

FCT NOVA38José Alferes – Adaptado de Database System Concepts - 7th Edition

Index Update: Insertion

§ Single-level index insertion:
• Perform a lookup using the search-key value appearing in the record

to be inserted.
• Dense indices – if the search-key value does not appear in the index,

insert it.
• Sparse indices – if index stores an entry for each block of the file, no

change needs to be made to the index unless a new block is created.
§ If a new block is created, the first search-key value appearing in

the new block is inserted into the index.
§ Multilevel insertion (as well as deletion) algorithms are simple extensions

of the single-level algorithms
• the outer indices are sparse, whereas the inner one is dense

FCT NOVA39José Alferes – Adaptado de Database System Concepts - 7th Edition

Secondary Indices

§ Frequently, one wants to find all the records whose values in a certain
field (which is not the search-key of the primary index) satisfy some
condition.
• Example 1: In the instructor relation stored sequentially by instructor

ID, we may want to find all instructors in a particular department
• Example 2: as above, but where we want to find all instructors with a

specified salary or range of salaries
§ We can have a secondary index with an index record for each search-key

value

FCT NOVA40José Alferes – Adaptado de Database System Concepts - 7th Edition

Secondary Indices Example

§ Secondary index on salary field of instructor

§ Index record points to a bucket that contains pointers to all the actual
records with that search-key value.

§ Secondary indices must be dense

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

FCT NOVA41José Alferes – Adaptado de Database System Concepts - 7th Edition

Primary vs Secondary Indices

§ Indices offer substantial benefits when searching for records.
§ BUT: indices imposes overhead on database modification

• when a record is inserted or deleted, every index on the relation must
be updated

• When a record is updated, any index on an updated attribute must be
updated

§ Sequential scan using clustering index is efficient, but a sequential scan
using a secondary (nonclustering) index is expensive on magnetic disk
• Each record access may fetch a new block from disk
• Each block fetch on magnetic disk requires about 5 to 10 milliseconds

